Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
J Am Med Inform Assoc ; 30(7): 1305-1312, 2023 06 20.
Article in English | MEDLINE | ID: covidwho-2325541

ABSTRACT

Machine learning (ML)-driven computable phenotypes are among the most challenging to share and reproduce. Despite this difficulty, the urgent public health considerations around Long COVID make it especially important to ensure the rigor and reproducibility of Long COVID phenotyping algorithms such that they can be made available to a broad audience of researchers. As part of the NIH Researching COVID to Enhance Recovery (RECOVER) Initiative, researchers with the National COVID Cohort Collaborative (N3C) devised and trained an ML-based phenotype to identify patients highly probable to have Long COVID. Supported by RECOVER, N3C and NIH's All of Us study partnered to reproduce the output of N3C's trained model in the All of Us data enclave, demonstrating model extensibility in multiple environments. This case study in ML-based phenotype reuse illustrates how open-source software best practices and cross-site collaboration can de-black-box phenotyping algorithms, prevent unnecessary rework, and promote open science in informatics.


Subject(s)
Boxing , COVID-19 , Population Health , Humans , Electronic Health Records , Post-Acute COVID-19 Syndrome , Reproducibility of Results , Machine Learning , Phenotype
2.
Nat Commun ; 14(1): 2914, 2023 05 22.
Article in English | MEDLINE | ID: covidwho-2322120

ABSTRACT

Long COVID, or complications arising from COVID-19 weeks after infection, has become a central concern for public health experts. The United States National Institutes of Health founded the RECOVER initiative to better understand long COVID. We used electronic health records available through the National COVID Cohort Collaborative to characterize the association between SARS-CoV-2 vaccination and long COVID diagnosis. Among patients with a COVID-19 infection between August 1, 2021 and January 31, 2022, we defined two cohorts using distinct definitions of long COVID-a clinical diagnosis (n = 47,404) or a previously described computational phenotype (n = 198,514)-to compare unvaccinated individuals to those with a complete vaccine series prior to infection. Evidence of long COVID was monitored through June or July of 2022, depending on patients' data availability. We found that vaccination was consistently associated with lower odds and rates of long COVID clinical diagnosis and high-confidence computationally derived diagnosis after adjusting for sex, demographics, and medical history.


Subject(s)
COVID-19 , Post-Acute COVID-19 Syndrome , United States/epidemiology , Humans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Cohort Studies , SARS-CoV-2 , Vaccination
3.
Sleep ; 2023 May 11.
Article in English | MEDLINE | ID: covidwho-2316915

ABSTRACT

STUDY OBJECTIVES: Obstructive sleep apnea (OSA) has been associated with more severe acute coronavirus disease-2019 (COVID-19) outcomes. We assessed OSA as a potential risk factor for Post-Acute Sequelae of SARS-CoV-2 (PASC). METHODS: We assessed the impact of preexisting OSA on the risk for probable PASC in adults and children using electronic health record data from multiple research networks. Three research networks within the REsearching COVID to Enhance Recovery initiative (PCORnet Adult, PCORnet Pediatric, and the National COVID Cohort Collaborative [N3C]) employed a harmonized analytic approach to examine the risk of probable PASC in COVID-19-positive patients with and without a diagnosis of OSA prior to pandemic onset. Unadjusted odds ratios (ORs) were calculated as well as ORs adjusted for age group, sex, race/ethnicity, hospitalization status, obesity, and preexisting comorbidities. RESULTS: Across networks, the unadjusted OR for probable PASC associated with a preexisting OSA diagnosis in adults and children ranged from 1.41 to 3.93. Adjusted analyses found an attenuated association that remained significant among adults only. Multiple sensitivity analyses with expanded inclusion criteria and covariates yielded results consistent with the primary analysis. CONCLUSIONS: Adults with preexisting OSA were found to have significantly elevated odds of probable PASC. This finding was consistent across data sources, approaches for identifying COVID-19-positive patients, and definitions of PASC. Patients with OSA may be at elevated risk for PASC after SARS-CoV-2 infection and should be monitored for post-acute sequelae.

4.
J Am Med Inform Assoc ; 30(6): 1125-1136, 2023 05 19.
Article in English | MEDLINE | ID: covidwho-2298624

ABSTRACT

OBJECTIVE: Clinical encounter data are heterogeneous and vary greatly from institution to institution. These problems of variance affect interpretability and usability of clinical encounter data for analysis. These problems are magnified when multisite electronic health record (EHR) data are networked together. This article presents a novel, generalizable method for resolving encounter heterogeneity for analysis by combining related atomic encounters into composite "macrovisits." MATERIALS AND METHODS: Encounters were composed of data from 75 partner sites harmonized to a common data model as part of the NIH Researching COVID to Enhance Recovery Initiative, a project of the National Covid Cohort Collaborative. Summary statistics were computed for overall and site-level data to assess issues and identify modifications. Two algorithms were developed to refine atomic encounters into cleaner, analyzable longitudinal clinical visits. RESULTS: Atomic inpatient encounters data were found to be widely disparate between sites in terms of length-of-stay (LOS) and numbers of OMOP CDM measurements per encounter. After aggregating encounters to macrovisits, LOS and measurement variance decreased. A subsequent algorithm to identify hospitalized macrovisits further reduced data variability. DISCUSSION: Encounters are a complex and heterogeneous component of EHR data and native data issues are not addressed by existing methods. These types of complex and poorly studied issues contribute to the difficulty of deriving value from EHR data, and these types of foundational, large-scale explorations, and developments are necessary to realize the full potential of modern real-world data. CONCLUSION: This article presents method developments to manipulate and resolve EHR encounter data issues in a generalizable way as a foundation for future research and analysis.


Subject(s)
COVID-19 , Electronic Health Records , Humans , Health Facilities , Algorithms , Length of Stay
5.
BMC Med ; 21(1): 58, 2023 02 16.
Article in English | MEDLINE | ID: covidwho-2276360

ABSTRACT

BACKGROUND: Naming a newly discovered disease is a difficult process; in the context of the COVID-19 pandemic and the existence of post-acute sequelae of SARS-CoV-2 infection (PASC), which includes long COVID, it has proven especially challenging. Disease definitions and assignment of a diagnosis code are often asynchronous and iterative. The clinical definition and our understanding of the underlying mechanisms of long COVID are still in flux, and the deployment of an ICD-10-CM code for long COVID in the USA took nearly 2 years after patients had begun to describe their condition. Here, we leverage the largest publicly available HIPAA-limited dataset about patients with COVID-19 in the US to examine the heterogeneity of adoption and use of U09.9, the ICD-10-CM code for "Post COVID-19 condition, unspecified." METHODS: We undertook a number of analyses to characterize the N3C population with a U09.9 diagnosis code (n = 33,782), including assessing person-level demographics and a number of area-level social determinants of health; diagnoses commonly co-occurring with U09.9, clustered using the Louvain algorithm; and quantifying medications and procedures recorded within 60 days of U09.9 diagnosis. We stratified all analyses by age group in order to discern differing patterns of care across the lifespan. RESULTS: We established the diagnoses most commonly co-occurring with U09.9 and algorithmically clustered them into four major categories: cardiopulmonary, neurological, gastrointestinal, and comorbid conditions. Importantly, we discovered that the population of patients diagnosed with U09.9 is demographically skewed toward female, White, non-Hispanic individuals, as well as individuals living in areas with low poverty and low unemployment. Our results also include a characterization of common procedures and medications associated with U09.9-coded patients. CONCLUSIONS: This work offers insight into potential subtypes and current practice patterns around long COVID and speaks to the existence of disparities in the diagnosis of patients with long COVID. This latter finding in particular requires further research and urgent remediation.


Subject(s)
COVID-19 , Post-Acute COVID-19 Syndrome , Humans , Female , International Classification of Diseases , Pandemics , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2
6.
EBioMedicine ; 87: 104413, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2165228

ABSTRACT

BACKGROUND: Stratification of patients with post-acute sequelae of SARS-CoV-2 infection (PASC, or long COVID) would allow precision clinical management strategies. However, long COVID is incompletely understood and characterised by a wide range of manifestations that are difficult to analyse computationally. Additionally, the generalisability of machine learning classification of COVID-19 clinical outcomes has rarely been tested. METHODS: We present a method for computationally modelling PASC phenotype data based on electronic healthcare records (EHRs) and for assessing pairwise phenotypic similarity between patients using semantic similarity. Our approach defines a nonlinear similarity function that maps from a feature space of phenotypic abnormalities to a matrix of pairwise patient similarity that can be clustered using unsupervised machine learning. FINDINGS: We found six clusters of PASC patients, each with distinct profiles of phenotypic abnormalities, including clusters with distinct pulmonary, neuropsychiatric, and cardiovascular abnormalities, and a cluster associated with broad, severe manifestations and increased mortality. There was significant association of cluster membership with a range of pre-existing conditions and measures of severity during acute COVID-19. We assigned new patients from other healthcare centres to clusters by maximum semantic similarity to the original patients, and showed that the clusters were generalisable across different hospital systems. The increased mortality rate originally identified in one cluster was consistently observed in patients assigned to that cluster in other hospital systems. INTERPRETATION: Semantic phenotypic clustering provides a foundation for assigning patients to stratified subgroups for natural history or therapy studies on PASC. FUNDING: NIH (TR002306/OT2HL161847-01/OD011883/HG010860), U.S.D.O.E. (DE-AC02-05CH11231), Donald A. Roux Family Fund at Jackson Laboratory, Marsico Family at CU Anschutz.


Subject(s)
COVID-19 , Post-Acute COVID-19 Syndrome , Humans , Disease Progression , SARS-CoV-2
7.
Nat Commun ; 13(1): 4117, 2022 07 15.
Article in English | MEDLINE | ID: covidwho-1937433

ABSTRACT

Cardiac involvement has been noted in COVID-19 infection. However, the relationship between post-recovery COVID-19 and development of de novo heart failure has not been investigated in a large, nationally representative population. We examined post-recovery outcomes of 587,330 patients hospitalized in the United States (257,075 with COVID-19 and 330,255 without), using data from the National COVID Cohort Collaborative study. Patients hospitalized with COVID-19 were older (51 vs. 46 years), more often male (49% vs. 42%), and less often White (61% vs. 69%). Over a median follow up of 367 days, 10,979 incident heart failure events occurred. After adjustments, COVID-19 hospitalization was associated with a 45% higher hazard of incident heart failure (hazard ratio = 1.45; 95% confidence interval: 1.39-1.51), with more pronounced associations among patients who were younger (P-interaction = 0.003), White (P-interaction = 0.005), or who had established cardiovascular disease (P-interaction = 0.005). In conclusion, COVID-19 hospitalization is associated with increased risk of incident heart failure.


Subject(s)
COVID-19 , Heart Failure , COVID-19/epidemiology , Cohort Studies , Heart Failure/epidemiology , Heart Failure/etiology , Hospitalization , Humans , Male , Proportional Hazards Models , United States/epidemiology
8.
Lancet Digit Health ; 4(7): e532-e541, 2022 07.
Article in English | MEDLINE | ID: covidwho-1852294

ABSTRACT

BACKGROUND: Post-acute sequelae of SARS-CoV-2 infection, known as long COVID, have severely affected recovery from the COVID-19 pandemic for patients and society alike. Long COVID is characterised by evolving, heterogeneous symptoms, making it challenging to derive an unambiguous definition. Studies of electronic health records are a crucial element of the US National Institutes of Health's RECOVER Initiative, which is addressing the urgent need to understand long COVID, identify treatments, and accurately identify who has it-the latter is the aim of this study. METHODS: Using the National COVID Cohort Collaborative's (N3C) electronic health record repository, we developed XGBoost machine learning models to identify potential patients with long COVID. We defined our base population (n=1 793 604) as any non-deceased adult patient (age ≥18 years) with either an International Classification of Diseases-10-Clinical Modification COVID-19 diagnosis code (U07.1) from an inpatient or emergency visit, or a positive SARS-CoV-2 PCR or antigen test, and for whom at least 90 days have passed since COVID-19 index date. We examined demographics, health-care utilisation, diagnoses, and medications for 97 995 adults with COVID-19. We used data on these features and 597 patients from a long COVID clinic to train three machine learning models to identify potential long COVID among all patients with COVID-19, patients hospitalised with COVID-19, and patients who had COVID-19 but were not hospitalised. Feature importance was determined via Shapley values. We further validated the models on data from a fourth site. FINDINGS: Our models identified, with high accuracy, patients who potentially have long COVID, achieving areas under the receiver operator characteristic curve of 0·92 (all patients), 0·90 (hospitalised), and 0·85 (non-hospitalised). Important features, as defined by Shapley values, include rate of health-care utilisation, patient age, dyspnoea, and other diagnosis and medication information available within the electronic health record. INTERPRETATION: Patients identified by our models as potentially having long COVID can be interpreted as patients warranting care at a specialty clinic for long COVID, which is an essential proxy for long COVID diagnosis as its definition continues to evolve. We also achieve the urgent goal of identifying potential long COVID in patients for clinical trials. As more data sources are identified, our models can be retrained and tuned based on the needs of individual studies. FUNDING: US National Institutes of Health and National Center for Advancing Translational Sciences through the RECOVER Initiative.


Subject(s)
COVID-19 , Adolescent , Adult , COVID-19/complications , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Humans , Machine Learning , Pandemics , SARS-CoV-2 , United States/epidemiology , Post-Acute COVID-19 Syndrome
9.
Virol J ; 19(1): 84, 2022 05 15.
Article in English | MEDLINE | ID: covidwho-1846850

ABSTRACT

BACKGROUND: Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used to reduce pain, fever, and inflammation but have been associated with complications in community-acquired pneumonia. Observations shortly after the start of the COVID-19 pandemic in 2020 suggested that ibuprofen was associated with an increased risk of adverse events in COVID-19 patients, but subsequent observational studies failed to demonstrate increased risk and in one case showed reduced risk associated with NSAID use. METHODS: A 38-center retrospective cohort study was performed that leveraged the harmonized, high-granularity electronic health record data of the National COVID Cohort Collaborative. A propensity-matched cohort of 19,746 COVID-19 inpatients was constructed by matching cases (treated with NSAIDs at the time of admission) and 19,746 controls (not treated) from 857,061 patients with COVID-19 available for analysis. The primary outcome of interest was COVID-19 severity in hospitalized patients, which was classified as: moderate, severe, or mortality/hospice. Secondary outcomes were acute kidney injury (AKI), extracorporeal membrane oxygenation (ECMO), invasive ventilation, and all-cause mortality at any time following COVID-19 diagnosis. RESULTS: Logistic regression showed that NSAID use was not associated with increased COVID-19 severity (OR: 0.57 95% CI: 0.53-0.61). Analysis of secondary outcomes using logistic regression showed that NSAID use was not associated with increased risk of all-cause mortality (OR 0.51 95% CI: 0.47-0.56), invasive ventilation (OR: 0.59 95% CI: 0.55-0.64), AKI (OR: 0.67 95% CI: 0.63-0.72), or ECMO (OR: 0.51 95% CI: 0.36-0.7). In contrast, the odds ratios indicate reduced risk of these outcomes, but our quantitative bias analysis showed E-values of between 1.9 and 3.3 for these associations, indicating that comparatively weak or moderate confounder associations could explain away the observed associations. CONCLUSIONS: Study interpretation is limited by the observational design. Recording of NSAID use may have been incomplete. Our study demonstrates that NSAID use is not associated with increased COVID-19 severity, all-cause mortality, invasive ventilation, AKI, or ECMO in COVID-19 inpatients. A conservative interpretation in light of the quantitative bias analysis is that there is no evidence that NSAID use is associated with risk of increased severity or the other measured outcomes. Our results confirm and extend analogous findings in previous observational studies using a large cohort of patients drawn from 38 centers in a nationally representative multicenter database.


Subject(s)
Acute Kidney Injury , COVID-19 , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , COVID-19 Testing , Cohort Studies , Humans , Pandemics , Retrospective Studies
10.
J Am Med Inform Assoc ; 29(7): 1172-1182, 2022 06 14.
Article in English | MEDLINE | ID: covidwho-1795238

ABSTRACT

OBJECTIVE: The goals of this study were to harmonize data from electronic health records (EHRs) into common units, and impute units that were missing. MATERIALS AND METHODS: The National COVID Cohort Collaborative (N3C) table of laboratory measurement data-over 3.1 billion patient records and over 19 000 unique measurement concepts in the Observational Medical Outcomes Partnership (OMOP) common-data-model format from 55 data partners. We grouped ontologically similar OMOP concepts together for 52 variables relevant to COVID-19 research, and developed a unit-harmonization pipeline comprised of (1) selecting a canonical unit for each measurement variable, (2) arriving at a formula for conversion, (3) obtaining clinical review of each formula, (4) applying the formula to convert data values in each unit into the target canonical unit, and (5) removing any harmonized value that fell outside of accepted value ranges for the variable. For data with missing units for all the results within a lab test for a data partner, we compared values with pooled values of all data partners, using the Kolmogorov-Smirnov test. RESULTS: Of the concepts without missing values, we harmonized 88.1% of the values, and imputed units for 78.2% of records where units were absent (41% of contributors' records lacked units). DISCUSSION: The harmonization and inference methods developed herein can serve as a resource for initiatives aiming to extract insight from heterogeneous EHR collections. Unique properties of centralized data are harnessed to enable unit inference. CONCLUSION: The pipeline we developed for the pooled N3C data enables use of measurements that would otherwise be unavailable for analysis.


Subject(s)
COVID-19 , Electronic Health Records , Cohort Studies , Data Collection , Humans
11.
Foot & ankle orthopaedics ; 7(1), 2022.
Article in English | EuropePMC | ID: covidwho-1710910

ABSTRACT

Background: The National COVID Cohort Collaborative (N3C) is an innovative approach to integrate real-world clinical observations into a harmonized database during the time of the COVID-19 pandemic when clinical research on ankle fracture surgery is otherwise mostly limited to expert opinion and research letters. The purpose of this manuscript is to introduce the largest cohort of US ankle fracture surgery patients to date with a comparison between lab-confirmed COVID-19–positive and COVID-19–negative. Methods: A retrospective cohort of adults with ankle fracture surgery using data from the N3C database with patients undergoing surgery between March 2020 and June 2021. The database is an NIH-funded platform through which the harmonized clinical data from 46 sites is stored. Patient characteristics included body mass index, Charlson Comorbidity Index, and smoking status. Outcomes included 30-day mortality, overall mortality, surgical site infection (SSI), deep SSI, acute kidney injury, pulmonary embolism, deep vein thrombosis, sepsis, time to surgery, and length of stay. COVID-19–positive patients were compared to COVID-19–negative controls to investigate perioperative outcomes during the pandemic. Results: A total population of 8.4 million patient records was queried, identifying 4735 adults with ankle fracture surgery. The COVID-19–positive group (n=158, 3.3%) had significantly longer times to surgery (6.5 ± 6.6 vs 5.1 ± 5.5 days, P = .001) and longer lengths of stay (8.3 ± 23.5 vs 4.3 ± 7.4 days, P < .001), compared to the COVID-19–negative group. The COVID-19–positive group also had a higher rate of 30-day mortality. Conclusion: Patients with ankle fracture surgery had longer time to surgery and prolonged hospitalizations in COVID-19–positive patients compared to those who tested negative (average delay was about 1 day and increased length of hospitalization was about 4 days). Few perioperative events were observed in either group. Overall, the risks associated with COVID-19 were measurable but not substantial. Level of Evidence: Level III, retrospective cohort study.

12.
JAMA Netw Open ; 5(2): e2143151, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1669321

ABSTRACT

Importance: Understanding of SARS-CoV-2 infection in US children has been limited by the lack of large, multicenter studies with granular data. Objective: To examine the characteristics, changes over time, outcomes, and severity risk factors of children with SARS-CoV-2 within the National COVID Cohort Collaborative (N3C). Design, Setting, and Participants: A prospective cohort study of encounters with end dates before September 24, 2021, was conducted at 56 N3C facilities throughout the US. Participants included children younger than 19 years at initial SARS-CoV-2 testing. Main Outcomes and Measures: Case incidence and severity over time, demographic and comorbidity severity risk factors, vital sign and laboratory trajectories, clinical outcomes, and acute COVID-19 vs multisystem inflammatory syndrome in children (MIS-C), and Delta vs pre-Delta variant differences for children with SARS-CoV-2. Results: A total of 1 068 410 children were tested for SARS-CoV-2 and 167 262 test results (15.6%) were positive (82 882 [49.6%] girls; median age, 11.9 [IQR, 6.0-16.1] years). Among the 10 245 children (6.1%) who were hospitalized, 1423 (13.9%) met the criteria for severe disease: mechanical ventilation (796 [7.8%]), vasopressor-inotropic support (868 [8.5%]), extracorporeal membrane oxygenation (42 [0.4%]), or death (131 [1.3%]). Male sex (odds ratio [OR], 1.37; 95% CI, 1.21-1.56), Black/African American race (OR, 1.25; 95% CI, 1.06-1.47), obesity (OR, 1.19; 95% CI, 1.01-1.41), and several pediatric complex chronic condition (PCCC) subcategories were associated with higher severity disease. Vital signs and many laboratory test values from the day of admission were predictive of peak disease severity. Variables associated with increased odds for MIS-C vs acute COVID-19 included male sex (OR, 1.59; 95% CI, 1.33-1.90), Black/African American race (OR, 1.44; 95% CI, 1.17-1.77), younger than 12 years (OR, 1.81; 95% CI, 1.51-2.18), obesity (OR, 1.76; 95% CI, 1.40-2.22), and not having a pediatric complex chronic condition (OR, 0.72; 95% CI, 0.65-0.80). The children with MIS-C had a more inflammatory laboratory profile and severe clinical phenotype, with higher rates of invasive ventilation (117 of 707 [16.5%] vs 514 of 8241 [6.2%]; P < .001) and need for vasoactive-inotropic support (191 of 707 [27.0%] vs 426 of 8241 [5.2%]; P < .001) compared with those who had acute COVID-19. Comparing children during the Delta vs pre-Delta eras, there was no significant change in hospitalization rate (1738 [6.0%] vs 8507 [6.2%]; P = .18) and lower odds for severe disease (179 [10.3%] vs 1242 [14.6%]) (decreased by a factor of 0.67; 95% CI, 0.57-0.79; P < .001). Conclusions and Relevance: In this cohort study of US children with SARS-CoV-2, there were observed differences in demographic characteristics, preexisting comorbidities, and initial vital sign and laboratory values between severity subgroups. Taken together, these results suggest that early identification of children likely to progress to severe disease could be achieved using readily available data elements from the day of admission. Further work is needed to translate this knowledge into improved outcomes.


Subject(s)
COVID-19/epidemiology , Adolescent , Age Distribution , COVID-19/complications , COVID-19/diagnosis , COVID-19/therapy , COVID-19/virology , Child , Child, Preschool , Comorbidity , Disease Progression , Early Diagnosis , Female , Humans , Infant , Male , Risk Factors , SARS-CoV-2 , Severity of Illness Index , Sociodemographic Factors , Systemic Inflammatory Response Syndrome/diagnosis , Systemic Inflammatory Response Syndrome/epidemiology , Systemic Inflammatory Response Syndrome/therapy , Systemic Inflammatory Response Syndrome/virology , United States/epidemiology , Vital Signs
13.
J Biomed Inform ; 127: 104002, 2022 03.
Article in English | MEDLINE | ID: covidwho-1639382

ABSTRACT

OBJECTIVE: The large-scale collection of observational data and digital technologies could help curb the COVID-19 pandemic. However, the coexistence of multiple Common Data Models (CDMs) and the lack of data extract, transform, and load (ETL) tool between different CDMs causes potential interoperability issue between different data systems. The objective of this study is to design, develop, and evaluate an ETL tool that transforms the PCORnet CDM format data into the OMOP CDM. METHODS: We developed an open-source ETL tool to facilitate the data conversion from the PCORnet CDM and the OMOP CDM. The ETL tool was evaluated using a dataset with 1000 patients randomly selected from the PCORnet CDM at Mayo Clinic. Information loss, data mapping accuracy, and gap analysis approaches were conducted to assess the performance of the ETL tool. We designed an experiment to conduct a real-world COVID-19 surveillance task to assess the feasibility of the ETL tool. We also assessed the capacity of the ETL tool for the COVID-19 data surveillance using data collection criteria of the MN EHR Consortium COVID-19 project. RESULTS: After the ETL process, all the records of 1000 patients from 18 PCORnet CDM tables were successfully transformed into 12 OMOP CDM tables. The information loss for all the concept mapping was less than 0.61%. The string mapping process for the unit concepts lost 2.84% records. Almost all the fields in the manual mapping process achieved 0% information loss, except the specialty concept mapping. Moreover, the mapping accuracy for all the fields were 100%. The COVID-19 surveillance task collected almost the same set of cases (99.3% overlaps) from the original PCORnet CDM and target OMOP CDM separately. Finally, all the data elements for MN EHR Consortium COVID-19 project could be captured from both the PCORnet CDM and the OMOP CDM. CONCLUSION: We demonstrated that our ETL tool could satisfy the data conversion requirements between the PCORnet CDM and the OMOP CDM. The outcome of the work would facilitate the data retrieval, communication, sharing, and analysis between different institutions for not only COVID-19 related project, but also other real-world evidence-based observational studies.


Subject(s)
COVID-19 , COVID-19/epidemiology , Databases, Factual , Electronic Health Records , Humans , Information Storage and Retrieval , Pandemics , SARS-CoV-2
14.
J Am Acad Orthop Surg Glob Res Rev ; 6(1)2022 01 04.
Article in English | MEDLINE | ID: covidwho-1606097

ABSTRACT

BACKGROUND: This study investigated the outcomes of coronavirus disease (COVID-19)-positive patients undergoing hip fracture surgery using a national database. METHODS: This is a retrospective cohort study comparing hip fracture surgery outcomes between COVID-19 positive and negative matched cohorts from 46 sites in the United States. Patients aged 65 and older with hip fracture surgery between March 15 and December 31, 2020, were included. The main outcomes were 30-day all-cause mortality and all-cause mortality. RESULTS: In this national study that included 3303 adults with hip fracture surgery, the 30-day mortality was 14.6% with COVID-19-positive versus 3.8% in COVID-19-negative, a notable difference. The all-cause mortality for hip fracture surgery was 27.0% in the COVID-19-positive group during the study period. DICUSSION: We found higher incidence of all-cause mortality in patients with versus without diagnosis of COVID-19 after undergoing hip fracture surgery. The mortality in hip fracture surgery in this national analysis was lower than other local and regional reports. The medical community can use this information to guide the management of hip fracture patients with a diagnosis of COVID-19.


Subject(s)
COVID-19 , Hip Fractures , Adult , Cohort Studies , Hip Fractures/surgery , Humans , Retrospective Studies , SARS-CoV-2 , United States/epidemiology
15.
JAMA Intern Med ; 182(2): 153-162, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1598451

ABSTRACT

Importance: Persons with immune dysfunction have a higher risk for severe COVID-19 outcomes. However, these patients were largely excluded from SARS-CoV-2 vaccine clinical trials, creating a large evidence gap. Objective: To identify the incidence rate and incidence rate ratio (IRR) for COVID-19 breakthrough infection after SARS-CoV-2 vaccination among persons with or without immune dysfunction. Design, Setting, and Participants: This retrospective cohort study analyzed data from the National COVID Cohort Collaborative (N3C), a partnership that developed a secure, centralized electronic medical record-based repository of COVID-19 clinical data from academic medical centers across the US. Persons who received at least 1 dose of a SARS-CoV-2 vaccine between December 10, 2020, and September 16, 2021, were included in the sample. Main Outcomes and Measures: Vaccination, COVID-19 diagnosis, immune dysfunction diagnoses (ie, HIV infection, multiple sclerosis, rheumatoid arthritis, solid organ transplant, and bone marrow transplantation), other comorbid conditions, and demographic data were accessed through the N3C Data Enclave. Breakthrough infection was defined as a COVID-19 infection that was contracted on or after the 14th day of vaccination, and the risk after full or partial vaccination was assessed for patients with or without immune dysfunction using Poisson regression with robust SEs. Poisson regression models were controlled for a study period (before or after [pre- or post-Delta variant] June 20, 2021), full vaccination status, COVID-19 infection before vaccination, demographic characteristics, geographic location, and comorbidity burden. Results: A total of 664 722 patients in the N3C sample were included. These patients had a median (IQR) age of 51 (34-66) years and were predominantly women (n = 378 307 [56.9%]). Overall, the incidence rate for COVID-19 breakthrough infection was 5.0 per 1000 person-months among fully vaccinated persons but was higher after the Delta variant became the dominant SARS-CoV-2 strain (incidence rate before vs after June 20, 2021, 2.2 [95% CI, 2.2-2.2] vs 7.3 [95% CI, 7.3-7.4] per 1000 person-months). Compared with partial vaccination, full vaccination was associated with a 28% reduced risk for breakthrough infection (adjusted IRR [AIRR], 0.72; 95% CI, 0.68-0.76). People with a breakthrough infection after full vaccination were more likely to be older and women. People with HIV infection (AIRR, 1.33; 95% CI, 1.18-1.49), rheumatoid arthritis (AIRR, 1.20; 95% CI, 1.09-1.32), and solid organ transplant (AIRR, 2.16; 95% CI, 1.96-2.38) had a higher rate of breakthrough infection. Conclusions and Relevance: This cohort study found that full vaccination was associated with reduced risk of COVID-19 breakthrough infection, regardless of the immune status of patients. Despite full vaccination, persons with immune dysfunction had substantially higher risk for COVID-19 breakthrough infection than those without such a condition. For persons with immune dysfunction, continued use of nonpharmaceutical interventions (eg, mask wearing) and alternative vaccine strategies (eg, additional doses or immunogenicity testing) are recommended even after full vaccination.


Subject(s)
COVID-19 Testing/statistics & numerical data , COVID-19/diagnosis , COVID-19/epidemiology , Health Status , Vaccination/statistics & numerical data , Adult , Aged , COVID-19 Vaccines , Cohort Studies , Female , Humans , Incidence , Male , Middle Aged , Retrospective Studies , Risk Factors , SARS-CoV-2/isolation & purification , Sex Distribution
16.
Lancet HIV ; 8(11): e690-e700, 2021 11.
Article in English | MEDLINE | ID: covidwho-1541050

ABSTRACT

BACKGROUND: Evidence of whether people living with HIV are at elevated risk of adverse COVID-19 outcomes is inconclusive. We aimed to investigate this association using the population-based National COVID Cohort Collaborative (N3C) data in the USA. METHODS: We included all adult (aged ≥18 years) COVID-19 cases with any health-care encounter from 54 clinical sites in the USA, with data being deposited into the N3C. The outcomes were COVID-19 disease severity, hospitalisation, and mortality. Encounters in the same health-care system beginning on or after January 1, 2018, were also included to provide information about pre-existing health conditions (eg, comorbidities). Logistic regression models were employed to estimate the association of HIV infection and HIV markers (CD4 cell count, viral load) with hospitalisation, mortality, and clinical severity of COVID-19 (multinomial). The models were initially adjusted for demographic characteristics, then subsequently adjusted for smoking, obesity, and a broad range of comorbidities. Interaction terms were added to assess moderation effects by demographic characteristics. FINDINGS: In the harmonised N3C data release set from Jan 1, 2020, to May 8, 2021, there were 1 436 622 adult COVID-19 cases, of these, 13 170 individuals had HIV infection. A total of 26 130 COVID-19 related deaths occurred, with 445 among people with HIV. After adjusting for all the covariates, people with HIV had higher odds of COVID-19 death (adjusted odds ratio 1·29, 95% CI 1·16-1·44) and hospitalisation (1·20, 1·15-1·26), but lower odds of mild or moderate COVID-19 (0·61, 0·59-0·64) than people without HIV. Interaction terms revealed that the elevated odds were higher among older age groups, male, Black, African American, Hispanic, or Latinx adults. A lower CD4 cell count (<200 cells per µL) was associated with all the adverse COVID-19 outcomes, while viral suppression was only associated with reduced hospitalisation. INTERPRETATION: Given the COVID-19 pandemic's exacerbating effects on health inequities, public health and clinical communities must strengthen services and support to prevent aggravated COVID-19 outcomes among people with HIV, particularly for those with pronounced immunodeficiency. FUNDING: National Center for Advancing Translational Sciences, National Institute of Allergy and Infectious Diseases, National Institutes of Health, USA.


Subject(s)
COVID-19/epidemiology , HIV Infections/epidemiology , Pandemics , Adolescent , Adult , Aged , Cohort Studies , Humans , Male , SARS-CoV-2 , United States/epidemiology
17.
EBioMedicine ; 74: 103722, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1536517

ABSTRACT

BACKGROUND: Numerous publications describe the clinical manifestations of post-acute sequelae of SARS-CoV-2 (PASC or "long COVID"), but they are difficult to integrate because of heterogeneous methods and the lack of a standard for denoting the many phenotypic manifestations. Patient-led studies are of particular importance for understanding the natural history of COVID-19, but integration is hampered because they often use different terms to describe the same symptom or condition. This significant disparity in patient versus clinical characterization motivated the proposed ontological approach to specifying manifestations, which will improve capture and integration of future long COVID studies. METHODS: The Human Phenotype Ontology (HPO) is a widely used standard for exchange and analysis of phenotypic abnormalities in human disease but has not yet been applied to the analysis of COVID-19. FUNDING: We identified 303 articles published before April 29, 2021, curated 59 relevant manuscripts that described clinical manifestations in 81 cohorts three weeks or more following acute COVID-19, and mapped 287 unique clinical findings to HPO terms. We present layperson synonyms and definitions that can be used to link patient self-report questionnaires to standard medical terminology. Long COVID clinical manifestations are not assessed consistently across studies, and most manifestations have been reported with a wide range of synonyms by different authors. Across at least 10 cohorts, authors reported 31 unique clinical features corresponding to HPO terms; the most commonly reported feature was Fatigue (median 45.1%) and the least commonly reported was Nausea (median 3.9%), but the reported percentages varied widely between studies. INTERPRETATION: Translating long COVID manifestations into computable HPO terms will improve analysis, data capture, and classification of long COVID patients. If researchers, clinicians, and patients share a common language, then studies can be compared/pooled more effectively. Furthermore, mapping lay terminology to HPO will help patients assist clinicians and researchers in creating phenotypic characterizations that are computationally accessible, thereby improving the stratification, diagnosis, and treatment of long COVID. FUNDING: U24TR002306; UL1TR001439; P30AG024832; GBMF4552; R01HG010067; UL1TR002535; K23HL128909; UL1TR002389; K99GM145411.


Subject(s)
COVID-19/complications , COVID-19/pathology , COVID-19/diagnosis , Humans , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
19.
BMC Med Inform Decis Mak ; 21(Suppl 6): 206, 2021 11 09.
Article in English | MEDLINE | ID: covidwho-1508420

ABSTRACT

BACKGROUND: The International Classification of Diseases (ICD) has long been the main basis for comparability of statistics on causes of mortality and morbidity between places and over time. This paper provides an overview of the recently completed 11th revision of the ICD, focusing on the main innovations and their implications. MAIN TEXT: Changes in content reflect knowledge and perspectives on diseases and their causes that have emerged since ICD-10 was developed about 30 years ago. Changes in design and structure reflect the arrival of the networked digital era, for which ICD-11 has been prepared. ICD-11's information framework comprises a semantic knowledge base (the Foundation), a biomedical ontology linked to the Foundation and classifications derived from the Foundation. ICD-11 for Mortality and Morbidity Statistics (ICD-11-MMS) is the primary derived classification and the main successor to ICD-10. Innovations enabled by the new architecture include an online coding tool (replacing the index and providing additional functions), an application program interface to enable remote access to ICD-11 content and services, enhanced capability to capture and combine clinically relevant characteristics of cases and integrated support for multiple languages. CONCLUSIONS: ICD-11 was adopted by the World Health Assembly in May 2019. Transition to implementation is in progress. ICD-11 can be accessed at icd.who.int.


Subject(s)
Biological Ontologies , International Classification of Diseases , Global Health , Humans , Knowledge Bases
20.
Ann Intern Med ; 174(10): 1395-1403, 2021 10.
Article in English | MEDLINE | ID: covidwho-1481181

ABSTRACT

BACKGROUND: Relatively little is known about the use patterns of potential pharmacologic treatments of COVID-19 in the United States. OBJECTIVE: To use the National COVID Cohort Collaborative (N3C), a large, multicenter, longitudinal cohort, to characterize the use of hydroxychloroquine, remdesivir, and dexamethasone, overall as well as across individuals, health systems, and time. DESIGN: Retrospective cohort study. SETTING: 43 health systems in the United States. PARTICIPANTS: 137 870 adults hospitalized with COVID-19 between 1 February 2020 and 28 February 2021. MEASUREMENTS: Inpatient use of hydroxychloroquine, remdesivir, or dexamethasone. RESULTS: Among 137 870 persons hospitalized with confirmed or suspected COVID-19, 8754 (6.3%) received hydroxychloroquine, 29 272 (21.2%) remdesivir, and 53 909 (39.1%) dexamethasone during the study period. Since the release of results from the RECOVERY (Randomised Evaluation of COVID-19 Therapy) trial in mid-June, approximately 78% to 84% of people who have had invasive mechanical ventilation have received dexamethasone or other glucocorticoids. The use of hydroxychloroquine increased during March 2020, peaking at 42%, and started declining by April 2020. By contrast, remdesivir and dexamethasone use gradually increased over the study period. Dexamethasone and remdesivir use varied substantially across health centers (intraclass correlation coefficient, 14.2% for dexamethasone and 84.6% for remdesivir). LIMITATION: Because most N3C data contributors are academic medical centers, findings may not reflect the experience of community hospitals. CONCLUSION: Dexamethasone, an evidence-based treatment of COVID-19, may be underused among persons who are mechanically ventilated. The use of remdesivir and dexamethasone varied across health systems, suggesting variation in patient case mix, drug access, treatment protocols, and quality of care. PRIMARY FUNDING SOURCE: National Center for Advancing Translational Sciences; National Heart, Lung, and Blood Institute; and National Institute on Aging.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Dexamethasone/therapeutic use , Hydroxychloroquine/therapeutic use , Practice Patterns, Physicians' , Adenosine Monophosphate/therapeutic use , Adolescent , Adult , Aged , Alanine/therapeutic use , Anti-Inflammatory Agents/therapeutic use , COVID-19/therapy , Female , Humans , Male , Middle Aged , Pandemics , Respiration, Artificial , Retrospective Studies , SARS-CoV-2 , United States , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL